In this presentation, an example showcasing Wireless InSite's novel diffuse scattering technique is applied to an office environment at 73 GHz and is compared against measurements.

Stay Up To Date on the Latest Webinars & Events!
Other content in this Stream

This example demonstrates how a custom beamforming table can be used to model downlink data rates from three MIMO base stations for 5G New Radio in a section of Boston.
In this article, we demonstrate how XFdtd’s superposition and array optimization features simplify the process for understanding device performance by providing efficient validation of array coverage.

Wireless InSite predicts the coverage and interference and accounts for the multipath in complex environments such as heavy-industrial factories, warehouses, server farms and more.
In this paper, we use modeling and simulation techniques to investigate critical challenges that Fixed Wireless Access (FWA) faces for operation in the physical environment at millimeter waves.

This simulation shows the coverage prediction from LTE sites in a suburban downtown area. With the emergence of 5G, Fixed Wireless Access and small cell mobile service can be provided.

This webinar demonstrates XFdtd’s superposition and array optimization techniques for beamforming and beam steering applications.
Wireless InSite’s ray-tracing was used to analyze signal propagation in a complex urban scenario. These coverage results highlight potential obstacles and solutions for deployment of mmWave for 5G.

In this example, XFdtd and RLD are used to design and analyze a 28 GHz antenna array capable of forming multiple beams for 5G network base stations.
This article describes the modeling of a SATCOM link, specifically the use case of using a satellite overlay to extend service continuity to IoT devices in a poorly covered rural area.
This presentation demonstrates a new predictive tool for simulating FD-MIMO in urban environments. We analyze predicted multipath and compare performance of beamforming techniques.
Professor Ram Narayanan of Penn State's College of Engineering worked with Remcom to produce a 5G millimeter wave coverage concept using existing AT&T towers in State College, PA.
Brief introduction to Wireless InSite's 5G MIMO capabilities.
How does Wireless InSite differ from your current planning tools? Discover the ten cues that your organization may need a channel modeling tool like Wireless InSite for your network planning efforts.
This collection of application examples demonstrates how REmcom's EM simulation software solves challenges related to 5G and MIMO.

A 60 GHz antenna array design is simulated in XF to demonstrate suitability for use on wireless Virtual Reality headsets. The final design is simulated mounted on a section of a virtual reality visor.

In this video from Remcom's booth at IMS 2019, Jeff Barney introduces the CDF of EIRP metric for antenna phased array analysis in XFdtd.
Brief introduction to Wireless InSite 3D Wireless Prediction Software.
Learn about Wireless InSite, key features and output, and the MIMO version of the product.
Remcom’s Wireless InSite provides an efficient method to predict channel characteristics for large-array MIMO antennas in complex multipath environments.
Modern antennas utilize MIMO technology in order to meet consumer demands for high data rates. As such, throughput is a required design metric when evaluating one antenna design versus another.