In this paper, we use modeling and simulation techniques to investigate critical challenges that Fixed Wireless Access (FWA) faces for operation in the physical environment at millimeter waves.

Stay Up To Date on the Latest Webinars & Events!
Other content in this Stream
In this whitepaper, we use Wireless InSite to provide a realistic assessment of radar altimeter interference due to emissions from 5G base stations.
This article explores the effectiveness of massive MIMO beamforming at mitigating the challenges expected from using the expanse of spectrum available in the mmWave band.
This paper explores the application of machine learning for optimal deployment of 5G infrastructure, such as the position and the orientation of the antenna that help achieve the best signal coverage.

Remcom's, Tarun Chawla, was a guest on the Sciencei Podcast. Tarun discussed the revolutionary technologies in wireless communications that have been developed during the past decades.

This example demonstrates how a custom beamforming table can be used to model downlink data rates from three MIMO base stations for 5G New Radio in a section of Boston.

This webinar demonstrates the strengths of XFdtd and Wireless InSite for designing and simulating smart home devices.
In this article, we demonstrate how XFdtd’s superposition and array optimization features simplify the process for understanding device performance by providing efficient validation of array coverage.

Wireless InSite predicts the coverage and interference and accounts for the multipath in complex environments such as heavy-industrial factories, warehouses, server farms and more.

This simulation shows the coverage prediction from LTE sites in a suburban downtown area. With the emergence of 5G, Fixed Wireless Access and small cell mobile service can be provided.

This webinar demonstrates XFdtd’s superposition and array optimization techniques for beamforming and beam steering applications.
Wireless InSite’s ray-tracing was used to analyze signal propagation in a complex urban scenario. These coverage results highlight potential obstacles and solutions for deployment of mmWave for 5G.

In this example, XFdtd and RLD are used to design and analyze a 28 GHz antenna array capable of forming multiple beams for 5G network base stations.
This article describes the modeling of a SATCOM link, specifically the use case of using a satellite overlay to extend service continuity to IoT devices in a poorly covered rural area.
This presentation demonstrates a new predictive tool for simulating FD-MIMO in urban environments. We analyze predicted multipath and compare performance of beamforming techniques.
Professor Ram Narayanan of Penn State's College of Engineering worked with Remcom to produce a 5G millimeter wave coverage concept using existing AT&T towers in State College, PA.
In this presentation, an example showcasing Wireless InSite's novel diffuse scattering technique is applied to an office environment at 73 GHz and is compared against measurements.
Brief introduction to Wireless InSite's 5G MIMO capabilities.
This collection of application examples demonstrates how REmcom's EM simulation software solves challenges related to 5G and MIMO.

A 60 GHz antenna array design is simulated in XF to demonstrate suitability for use on wireless Virtual Reality headsets. The final design is simulated mounted on a section of a virtual reality visor.

In this video from Remcom, Jeff Barney introduces the CDF of EIRP metric for antenna phased array analysis in XFdtd.