

**Electromagnetic Simulation Software** 

# Simulation of Electrostatic Discharge (ESD) Testing with XFdtd<sup>®</sup>

### Gregory Moss XFdtd Research Manager

This material is based upon work sponsored by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under Award Number DE-SC0017164.

315 S. Allen St., Suite 416 | State College, PA 16801 USA | +1.814.861.1299 phone | +1.814.861.1308 fax | sales@remcom.com | www.remcom.com | © Remcom Inc. All rights reserved.

# Disclaimer

2019

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

# Overview



- 1. Static Electricity and Electrostatic Discharge (ESD)
- 2. Electrostatic Discharge Testing
- 3. ESD Testing Simulation with XFdtd
- 4. Conclusions



# **Static Electricity**

# 2019

### Causes:

- Contact / Triboelectric
- Pressure / Piezoelectric
- Temperature / Pyroelectric
- Charge / Electrostatic Induction





## **Triboelectric Charge**



#### **Triboelectric Charge Triboelectric Charge** Material Material Contact Separation **+**+ t. **+**+ ++ Material "A" Material "B" Material "A" Material "B" Net = 0Net = 0Net = +1Net =

Source: [1]

REMC

© Remcom Inc. All rights reserved.

# **Triboelectric Charge**

# 2019

q = CV

- q Charge (Coulombs) C – Capacitance (Farads)
- *V* Voltage (Volts)

$$E = \frac{1}{2}CV^{2}$$
  
E - Energy (joules)

| Examples of Static Generation - Typical Voltage Levels |           |           |  |  |  |
|--------------------------------------------------------|-----------|-----------|--|--|--|
| Means of Generation                                    | 10-25% RH | 65-90% RH |  |  |  |
| Walking Across Carpet                                  | 35,000V   | 1,500V    |  |  |  |
| Walking Across Vinyl Tile                              | 12,000V   | 250V      |  |  |  |
| Worker at a Bench                                      | 6,000V    | 100V      |  |  |  |
| Poly Bag Picked up from Bench                          | 20,000V   | 1,200V    |  |  |  |
| Chair with Urethane Foam                               | 18,000V   | 1,500V    |  |  |  |

Source: [1]

## Electrostatic Discharge

# 2019



## **ESD** Cost



"... in the electronics industry, losses associated with ESD are estimated at between a half billion and five billion dollars annually."

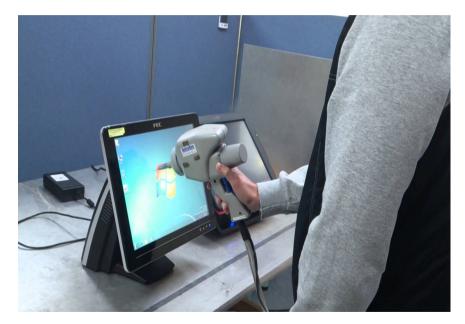
- In reality, total ESD cost is very difficult to determine.
- Facts:
  - Multiple Prototypes
  - Warranty Claims
  - Loss of Consumer Confidence

Reference: [2]





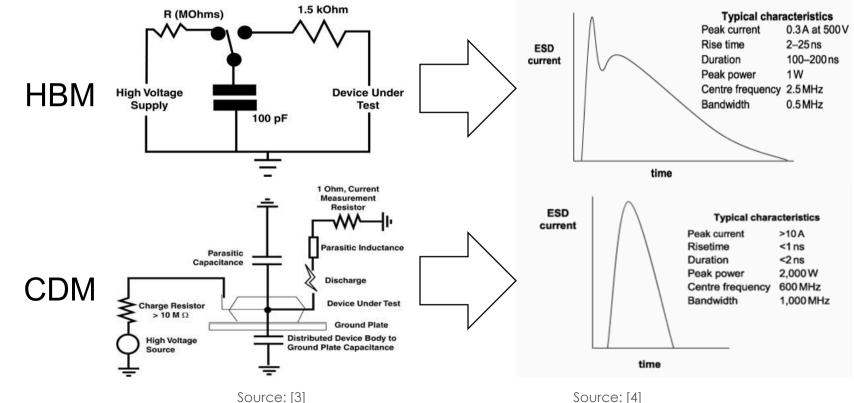
# **ESD** Testing


# 2019

### Standards:

• ANSI/ESD, IEC, JEDEC, MIL, etc.

Common Test Models:


- Human Body Model (HBM)
- Charged Device Model (CDM)
- Machine Model (MM)

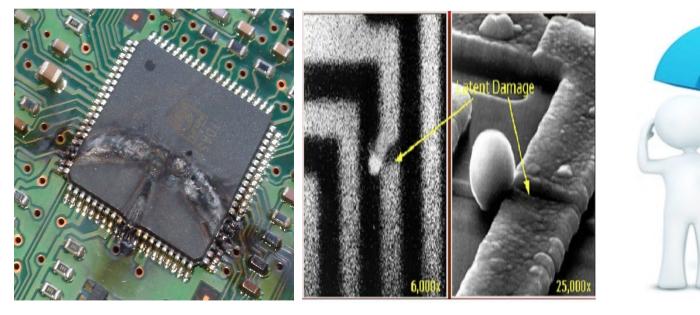




### **HBM & CDM Models**






## **ESD** Damage

# 2019

### Catastrophic

#### Latent

### Upset



# XFdtd ESD Simulation

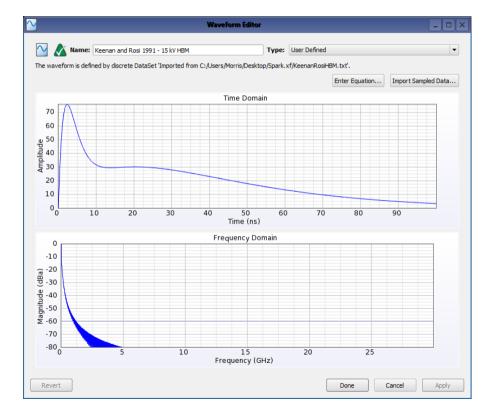


### <u>Goals:</u>

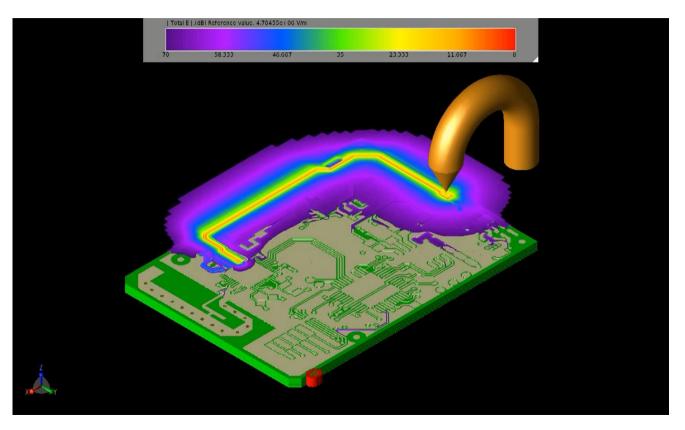
- Help engineers pinpoint locations in their designs at risk of experiencing dielectric breakdown during ESD testing.
- Help engineers pinpoint components at risk of damage during ESD testing.
- Allow engineers to optimize their ESD mitigation designs prior to hardware prototyping.
- Reduce product development costs and time to market.
- Improve product reliability and consumer confidence.

# New XFdtd Functionality

- ESD Waveforms
  > HBM, CDM, MM, etc.
- Material Parameter
  Dielectric Strength
- Result Sensor
  - Dielectric Breakdown
- Circuit Components
  Rated Voltage/Current







# ESD Waveforms

**2019** 

- ESD waveforms can be imported using XFdtd's improved User Defined Waveform feature.
- <u>Waveform References:</u>
  [5] Cerri et al., 1996
  [6] Keenan and Rosi, 1991
  [7] Songlin et al., 2003
  [8] Yuan et al., 2006
  [9] Wang et al., 2003
  [10] Berghe and Zutter, 1998



### **ESD Testing Electric Fields**





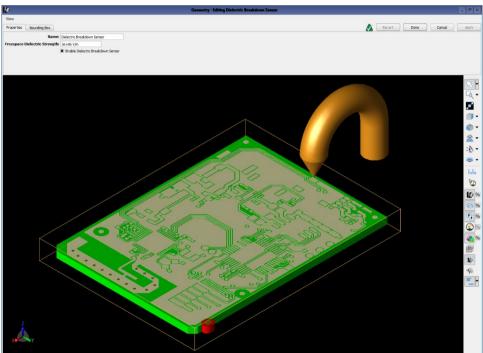
## **Dielectric Strength**

- Defines the maximum electric field a material can withstand without experiencing dielectric breakdown and losing its insulating properties.
- Materials with an infinite dielectric strength will be ignored by the Dielectric Breakdown Sensor.

REMC

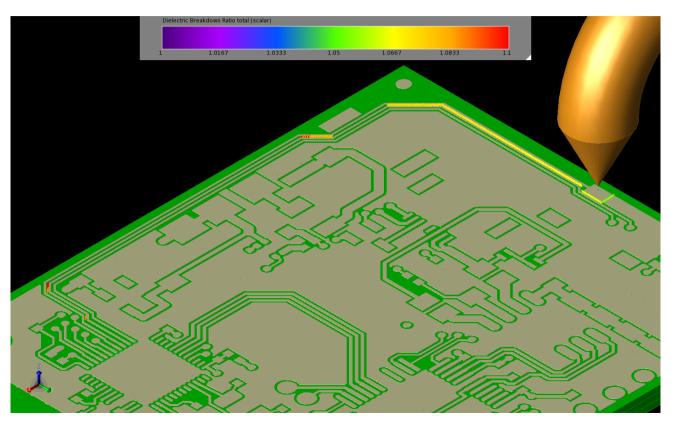
Apply

#### Å **Material Editor** Name: Substrate Type: Physical Ŧ Electric: Isotropic Magnetic: Free Space • Electric Physical Parameters Appearance Notes Type: Nondispersive • -Entry Method: Normal Good Conductor: Automatic 💌 Surface Conductivity Correction Conductivity: 0.001 S/m Relative Permittivity: 4.2 Infinite Dielectric Strength Dielectric Strength: 2e+07 V/m


Done

Revert

Cancel


# **Dielectric Breakdown Sensor**

- Computational savings can be obtained by reducing the size of the sensor to the geometry's bounding box or to specific regions of interest.
- The default dielectric strength of free space is set to 3.0 MV/m corresponding to air at sea level.



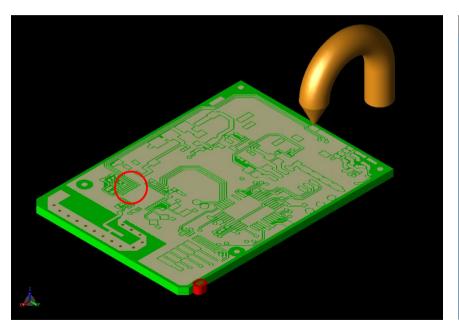


### **Dielectric Breakdown Risk**





# **Rated Components**


- Rated peak voltages and currents can be obtained from a circuit component's data sheet and entered into its Circuit Component Definition.
- Infinite rated voltages and currents will be ignored by XFdtd's System Sensor.

|                  | Circuit Comp                                | ponent Definition Editor | - • ×    |
|------------------|---------------------------------------------|--------------------------|----------|
| 뺍 🚺 Name         | e: 50 Ohm Resistor                          | Type: Passive Load       | •        |
| Resistance:      | 50 ohm                                      | RLC Specification: Norm  | nal 🔻    |
| Inductance:      | 0 nH                                        |                          | 0        |
| Capacitance:     | 0 pF                                        |                          |          |
| RLC Arrangen     | All Series<br>nent: All Parallel<br>RL    C |                          | <u> </u> |
| -Rated Voltage & |                                             |                          |          |
| Rated Voltage    |                                             | Infinite Rated Voltage   |          |
| Rated Curren     | t: inf A                                    | X Infinite Rated Current |          |
| Revert           |                                             | Done Cancel              | Apply    |



## **Exceeded Design Specs**





| Max Component Voltages and Currents Results for Remote : 000008 : 1                                                                                                                                           |             |               |             |               |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|-------------|---------------|--|--|
| ile                                                                                                                                                                                                           |             |               |             |               |  |  |
| Max Component Voltages and Currents Results for:      Run Details        Project Name:      Remote        Simulation:      HBM Test (Coarse Staircase, Reduced Dielectric Strength)        Run Number:      1 |             |               |             |               |  |  |
| Component Name /                                                                                                                                                                                              | Max Voltage | Rated Voltage | Max Current | Rated Current |  |  |
| C1                                                                                                                                                                                                            | 17.7892 V   | 16 V          | 0.170955 A  |               |  |  |
| C2                                                                                                                                                                                                            | 2.55162 V   | 16 V          | 0.0439905 A |               |  |  |
| C3                                                                                                                                                                                                            | 9.12234 V   | 16 V          | 0.154973 A  |               |  |  |
| ESD Feed                                                                                                                                                                                                      | 392.368 V   |               | 5.34214 A   |               |  |  |
| L1                                                                                                                                                                                                            | 1.42421 V   |               | 0.572944 A  | 0.44 A        |  |  |
| L2                                                                                                                                                                                                            | 0.9173 V    |               | 0.268556 A  | 0.44 A        |  |  |
| L3                                                                                                                                                                                                            | 1.08432 V   |               | 0.134515 A  | 0.44 A        |  |  |
| R1                                                                                                                                                                                                            | 20.1895 V   | 30 V          | 0.40379 A   |               |  |  |
| R2                                                                                                                                                                                                            | 64.1534 V   | 30 V          | 1.28307 A   |               |  |  |
| R3                                                                                                                                                                                                            | 278.358 V   | 30 V          | 5.56717 A   |               |  |  |



# **Optimize ESD Mitigation**

- Once locations and components at risk of suffering ESD damage are pinpointed, the ESD mitigation design can be optimized:
  - Increase distance between traces
  - Reduce sharp angles and edges
  - Use materials with higher dielectric strength
  - Introduce ESD protection circuits and/or suppressors
  - Improve shielding
  - Use quality components with higher rated values



# Conclusions



- ESD simulation does not replace hardware testing.
- ESD simulation does allow engineers to predict potential ESD problems and optimize ESD protection in the design phase.
  - Reduce number of hardware prototypes
  - Reduce product development cost
  - Reduce time to market
  - Improve product reliability
- This is only beginning...Multiphysics ESD Analysis
  - Spark Discharge Simulation
  - Thermal Damage Simulation

### References

2019

- 1. https://esda.org/about-esd/esd-fundamentals/part-1-an-introduction-to-esd/
- 2. http://incompliancemag.com/article/the-qrealq-cost-of-esd-damage/
- 3. https://esda.org/about-esd/esd-fundamentals/part-5-device-sensitivity-and-testing/
- 4. http://www.mtarr.co.uk/courses/topics/0215\_esdw/index.html
- 5. Cerri, G., R. Leo, and V. M. Primiani, "ESD indirect coupling modelling," *IEEE Trans. on EMC*, 38, pp. 274 281, 1996.
- 6. Keenan, R. K., and L. K. A. Rossi, "Some fundamental aspects of ESD testing," *Proc. Of IEEE Int. Symp. on Electromagnetic Compatibility*, pp. 236 241, 1991.
- 7. Songlin, S., B. Zengjun, T. Minghong, and L. Shange, "A new analytical expression of current waveform in standard IEC61000-4-2," *High Power Laser and Particle Beams*, 5, pp. 258 271, 2003.
- 8. Yuan, Z., T. Li, J. He, S. Chen, and R. Zeng, "New mathematical descriptions of ESD current waveform based on the polynomial of pulse function," *IEEE Trans. on EMC*, 48(3), pp. 589 591, 2006.
- 9. Wang, K., D. Pommerenke, R. Chundru, T. Van Doren, J. L. Drewniak, and A. Shashindranath, "Numerical modeling of electrostatic discharge generators," *IEEE Trans. on EMC*, 45(2), pp. 258 271, 2003.
- 10. Berghe, S. V., and D. Zutter, "Study of ESD signal entry through coaxial cable shields," *J. Electrostat.*, 44, pp. 135 148, 1998.

# **Contact Us**



- XFdtd ESD questions, collaborations, feature requests, beta testing, etc.: <u>Gregory.Moss@remcom.com</u>
- General: Toll Free: 1-888-7REMCOM (U.S. and Canada) Tel: 1-814-861-1299 Email: <u>sales@remcom.com</u> www.remcom.com
- Website Contact: <u>www.remcom.com/contact</u>