

Simulation of Beamforming by Massive MIMO Antennas in Dense Urban Environments Authors: Greg Skidmore, Dr. Gary Bedrosian

Speaker: Greg Skidmore, Remcom, Inc. Sep 20, 2016

Introduction

- This paper presents innovative and optimized approach to channel modeling for *massive MIMO*, a key technology for 5G
- Our approach:
 - Extends 3D ray-tracing, and addresses shortfalls identified in literature
 - Significant optimizations allow simulations between each Transmit and Receive antenna in reasonable time (<u>this is critical!</u>)
- Study: uses to simulate beamforming with MRT and ZFBF
 - Calculate power, SINR, and interference
 - Predict impact of pilot contamination

Overall: provides new insight into the nature of beams in urban settings and demonstrates value of new MIMO simulation capability

Objectives of 5G

Key Objectives Move Toward Connected Information Society [1]

Potential Benefits of Massive MIMO^{[1]-[3]}

- Increases capacity 10x via spatial multiplexing
- Improves radiated energy-efficiency 100x
 Directs signal to user, reducing power & interference
- Can use inexpensive, low-power components
- Reduces latency, eliminates fading
- More robust to interference and jamming

REMO

Channel Modeling for 5G

- Organizations such as 3GPP and METIS have researched channel modeling requirements; METIS* requirements for 5G include [4]:
 - Very high bandwidths (hundreds of MHz)
 - Full three-dimensional & accurate polarization modeling
 - Massive MIMO: spherical waves and high spatial resolution
 - Extremely large array antennas
 - Spatial consistency as points move or are in close proximity
 - Wide range of propagation scenarios
 - Wide frequency range (<1GHz up to 86+ GHz)
 - Dual-mobility for D2D, M2M, V2V

Importance of diffuse vs. specular scattering at mm wave

Our approach focuses on these MIMO-relevant requirements

* Mobile and wireless communications Enablers for Twentytwenty (2020) Information Society

Simulating MIMO with 3D Ray-Tracing

- Use Wireless InSite[®] to simulate MIMO channels
- 3D ray-tracing provides data required by MIMO algorithms
 - Complex path gain
 - Full resolution of spherical & diffracted waves across array
 - 3D path data w/full time, angle & polarization information
 - Complete spatial consistency throughout complex scenes
- But: out-of-box, very complex for *traditional* ray-tracers

REMC

Propagation Paths for Channel between 1 Transmit/Receive MIMO Antenna Pair

New Wireless InSite[®] MIMO Capability

- New capability offers innovative optimizations that made several parts of study possible
 - <u>Starting Point</u>: GPU-accelerated / multithreaded X3D ray model in Wireless InSite as starting point
 - <u>Optimizations</u>: Two key optimizations allow calculations within timeframes on same order as single-antenna simulations:
 - Adjacent Path Generation (APG): leverages path data for coarse points
 - MIMO exact path correction: finds precise paths to array elements
 - <u>Result</u>: precise path data between each Tx-Rx MIMO antenna pair while minimizing additional ray-tracing calculations
- These optimizations were critical for simulating a 128element MIMO array

Beamforming: Spatial Multiplexing

- Massive MIMO uses beamforming to send multiple data streams
 - Uses pilot signals to characterize channel
 - Different signals to different users in cell over same frequency
 - Sharing frequency increases capacity & data rate

How it's Often Conceptualized

How it may actually look in an urban scene (example: zero forcing technique)

Image demonstrates concept of optimizing for one user () while minimizing interference to others ()

Beamforming Techniques in this Study

• Investigated two techniques:

- 1) Max. Ratio Transmission (MRT) Sets beamforming weights for device to maximize sum of channel gains
- 2) Zero Forcing (ZF)

Sets beamforming weights to minimize interference to all other users in cell, placing them within local nulls

Post-processed Results

- Developed tools to extract simulation results and calculate beamforming weights
- Used Matlab scripts provided by authors of [5] to calculate MRT and ZF weighting vectors

MIMO Simulation Scenario: Urban Small Cell in Rosslyn, Virginia

Scenario: Urban Small Cell

- Site: Rosslyn, Virginia
- MIMO Base Station
 - Massive MIMO atop pole in median (10m)
- 16 Mobile Devices (red)
 - 15 stationary
 - 1 moving along route
- 17th device in neighboring cell (blue)

Massive MIMO Antenna

- Frequency: 28 GHz
- 128 antennas
 - 8x8 w/cross-pol
 - Dipoles (for simplicity)
- Dimensions
 - $\frac{1}{2}$ - λ spacing (1.07cm)
 - 4.3cm x 4.3cm

Field Map for a Single Element

- Field map shows significant multipath
 - Strongest in LOS North & West of base station
 - Multipath extends into street to Northwest

Path Gain

- Path gain is sum total of all paths (with phase)
 - Hundreds of paths to each point
 - Significant variation in magnitude & phase
- Plot overlays path gain on route for 128 elements
 - Higher cluster: verticallypolarized elements (co-pol)
 - Lower: horizontal (cross-pol)
- Complex path gain is input to beamforming algorithms

Comparing Beamforming Techniques

MRT: maximizes beam to device, ignoring interference to others

Zero-Forcing: minimizes interference to other devices (clear difference)

Comparing Beamforming Techniques

MRT: maximizes beam to device, ignoring interference to others

Zero-Forcing: minimizes interference to other devices (clear difference)

Movies: MIMO Beamforming in Motion

Maximum Ratio Transmission (MRT) Beamforming

Zero Forcing (ZF) Beamforming

Click to watch the movie.

Click to watch the movie.

Signal-to-Interference+Noise (SINR)

• SINR is a key measure for determining capacity of a channel

SINR = Interference + Noise

• *Interference* is the total power of signals received by a device that are part of beams directed to other devices

Signal-to-Interference+Noise

- Calculated SINR
 - <u>Power:</u> assumed 10W over Tx array
 - Interference: summed power of beams to all other devices
 - <u>Noise:</u> -87dBm, using [6]
- ZF much better than MRT for this scenario
 - 15-40dB higher over most of route

Details on Power, Interference & SINR

• MRT delivers more power, but ZF suppresses interference, providing much higher SINR

Table 2: Received Power and SINR for moving Device

Mean Over Route	MRT	7 F	
Received Power (dBm)	-49.0	-63.0	MRT: 14dB
Interference (dBm)	-47.9	Negl.*	nigner power
SINR (dB)	-3.7	21.6	ZF: 25dB higher

*Interference for ZF was negligible (well below noise floor)

Pilot Contamination

- MIMO system uses pilot sequences to estimate channels
 - Because possible orthogonal sequences limited by channel coherence time, adjacent cells likely to overlap
- Same pilot from multiple terminals degrades channel estimate
 - May reduce SINR to user in cell
 - May direct more interference toward user in adjacent cell

Pilot Contamination Scenario

Device in nearby cell shares pilot signal with moving device (pilot contamination)

Pilot Contamination: Impact to MRT

REMC

Pilot Contamination: Impact to ZF

ZF to sample point on route (before pilot contamination)

After pilot contamination: power to intended device noticeably reduced

Pilot Contamination: Impact to SINR

Significantly reduces SINR for ZF (little effect on MRT)

Increases interference to neighboring Rx for both MRT & ZF

Pilot Contamination: Impact to SINR

Table 1: Effect on Local Cell

Beam	Mean Values	Orig.	Pilot	Change
	Over Route		Cont	
MRT	Rcvd. Pwr. (dBm)	-49.0	-51.0	-1.9
	Interference (dBm)	-47.9	-47.9	0
	SINR (dB)	-3.7	-5.6	-1.9
ZF	Rcvd. Pwr. (dBm)	-63.0	-68.6	-5.6
	Interference (dBm)	Neg.*	-64.2	High*
	SINR (dB)	21.6	-7.6	-29.1

*Interference for ZF increases from well below noise floor to above signal, significantly reducing SINR.

Table 2: Interference to Neighboring Device

Beam	Mean Values	Orig.	Pilot	Change
	Over Route		Cont	
MRT	Interference (dBm)	-75.1	-62.6	+12.4
ZF	Interference (dBm)	-73.3	-64.5	+8.8

Both techniques increase interference (9-12dB)

MRT: minor impact to SINR

ZF: small reduction in power; big increase to interference <u>Result: SINR 29dB lower!</u>

Value of Simulation Optimizations

- Recorded run times for sims in this study
 - High-end PC: Intel i7-3770,
 32GB RAM, Quadro K620 GPU
 - Recorded sim times for 3 cases
- Estimated baseline without optimizations (1 sim/antenna)
- Result: <u>51X 94X faster</u> than traditional (brute-force) approach
- Makes sims like beamforming field map possible

Table: Estimated Run Time Optimization

Simulation Case	Mobile Devices 317 pts	Field Map 66K pts
Single Antenna (SISO)		
• Before optimizations	36 sec	36 min
• APG accelerated	30 sec	9 min
Optimized MIMO	96 sec	49 min
MIMO estimate	79 min	4,572 min
without optimizations		(~3 days)
Speed improvement	51X	94X

Conclusions

- Presented new, efficient method for predicting detailed channel characteristics for massive MIMO
 - Optimizations to Wireless InSite model allow results with only small increase in run time over un-optimized, single-antenna sims
- Study: extracted channel matrices from simulations and computed beams using MRT & ZF beamforming
 - Evaluated power, interference, SINR
 - Showed how pilot contamination degrades performance
 - Study provides insight into MIMO beams in urban settings
- Results demonstrate value of new MIMO capability and show how it can be applied to practical problems for research and assessment of MIMO performance

References

- [1] A. Osserian, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for the 5G Mobile and Wireless Communications: the Vision of the METIS Project," IEEE Communications Magazine, Vol. 52, Issue 5, May 2014, pp. 26-35.
- [2] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
- [3] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, "An Overview of Massive MIMO: Benefits and Challenges," IEEE Journal of Selected Topics in Signal Processing, Vol. 8, No. 5, October 2014, pp. 742-758.
- [4] METIS2020, "METIS Channel Model," Tech. Rep. METIS2020, Deliverable D1.4 v3, July 2015. Available: <u>https://www.metis2020.com/wp-content/uploads/METIS_D1.4_v3.pdf</u>.
- [5] E. Björnson, M. Bengtsson, and B. Ottersten, "Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure", IEEE Signal Processing Magazine, Vol. 31, No. 4, 2014, pp. 142-148. Also available arXiv:1404.0408v2 [cs.IT] 23 Apr 2014.
- [6] R. Beck, "Results of Ambient RF Environment and Noise Floor Measurements Taken in the U.S. in 2004 and 2005," World Meteorological Organization Report, CBS/SG-RFC 2005/Doc. 5(1), March 2006.

