

Electromagnetic Simulation Software

Simulation of Beamforming using FD-MIMO for LTE-Advanced Pro in an Urban Small Cell

European Microwave Week 2017 Author: Greg Skidmore, Remcom, Inc.

315 S. Allen St., Suite 416 | State College, PA 16801 USA | +1.814.861.1299 phone | +1.814.861.1308 fax | sales@remcom.com | www.remcom.com | © Remcom Inc. All rights reserved.

Introduction

- FD-MIMO is a promising new technology in LTE-A Pro
- This presentation shows how Remcom's Wireless InSite[®] MIMO can be used to predict performance for FD-MIMO systems in an urban small cell
 - Wireless InSite MIMO provides an innovative and optimized capability for high-fidelity predictive simulation of complex channel characteristics
 - We extend these results to evaluate SINR and throughput for several different beamforming methods
 - The result is a tradeoff of MIMO methods and throughput for a sample planning scenario, demonstrating the value of high-fidelity simulation

Simulating FD-MIMO in Wireless InSite

- Wireless InSite predicts MIMO channels with complex multipath
 - 3D ray-tracing provides accurate channel data, with angle, phase and polarization
- MIMO optimizations:
 - Simulates large MIMO systems with minimal increase to run-time
 - Yet retains detailed polarization, phase and gain across all antenna pairs

Propagation Paths for channel between 1 transmit/receive MIMO antenna pair

Full-Dimension MIMO (FD-MIMO)

- What is FD-MIMO?
 - LTE-A Pro allows up to 64 antennas
 - "Full-dimension" refers to arrays in both vertical and horizontal directions, allowing for creation of 3D beams
 - Beamforming directs signal to UE, increasing its SINR while reducing interference to others
 - Increases spectral efficiency and total throughput of a small cell

Beamforming with FD-MIMO

Other Key Technologies in this Demo

- Cooperative MultiPoint (CoMP)
 - Base stations coordinate on scheduling/beamforming to minimize inter-cell interference, and potentially even combine signals (joint processing)
 - Becomes even more critical with beamforming, particularly at cell edge
- 256 QAM (added in LTE-A R12)
 - Increases potential throughput, and small cells with beamforming more likely to achieve SINR required to be able to use it
- New spectrum becoming available, such as Citizens Broadband Radio Service (CBRS, 3.5 GHz) unlicensed bands, and future mmwave bands increase available spectrum for these technologies

Demonstration: FD-MIMO in Boston

- 3 small cell base stations in downtown Boston
 - 2 on lampposts (15m height)
 - 1 (left) placed 50m up on building to propagate over trees in square
- Using new spectrum to augment existing coverage
 - Frequency: CBRS
 - 20 MHz (3.55-3.57 GHz)

Antennas for SISO & MIMO Scenarios

- 4 scenarios for base station antennas:
 - Baseline SISO: sector horns
 - MIMO, 4 elements (2 xpol patch)
 - MIMO, 16 elements (8 xpol)
 - MIMO, 64 elements (32 xpol)

- User equipment (UE)
 - 1 isotropic antenna for SISO
 - 2 xpol isotropics for MIMO cases

SISO Baseline: SINR

- All base stations set up with a sector horn; UE grid with isotropic antennas
- Calculated SINR accounting for:
 - Ambient noise, -168dBm/Hz [2]
 - Interference from other base stations
- SINR field map shows good coverage over most of area
 - Some areas of shadowing and interference

SISO Baseline: Shadowing & Interference

- Inter-cell interference occurs at cell edges between base stations (shown in red)
- Shadowing by buildings in center of base stations (blue)

4th Base Station Reduces Shadowed Areas

- Added 4th base station to improve shadowed area (green circle)
 - Ignored inter-cell interference
 - Assume different bands or use of inter-cell interference coordination
- Successfully reduces much of the shadowed area in top middle

SISO Throughput for 20 MHz Component Carrier

- Defined UE route through scene
 - Passes by each base station
 - Includes shadowed areas overcome by 4th base station
- Calculated LTE-A Pro throughput
 - Lookup tables devised based on SINR and 3GPP Rel 13 transport block size tables [3]
 - 256 QAM highest throughput for 20 MHz: 97.9 Mbps

Throughput along Route

Results show that when 4th base station added (red line), more of route achieves max 256-QAM throughput

MIMO Beamforming & Spatial Multiplexing

- Evaluated 3 MIMO techniques:
 - Singular Value Decomposition (SVD)
 - Creates isolated data streams to each Rx antenna (spatial multiplexing)
 - Max. Ratio Transmission (MRT)
 - Creates beam maximizing gain to a receiving antenna
 - Directed beams to both UE antennas and combined (Max Ratio Combining)
 - Zero Forcing (ZF)

REMC

- Creates beam to antenna while minimizing interference to others (allows stream to each UE antenna)
- Applied these for a single user at each position to predict coverage for grid and route (SU-MIMO, *not* MU-MIMO)

MRT/MRC: Beams Combined

Zero Forcing & SVD: Multiple Streams

Simulations & Prototypes Used in Study

Process:

REMC

- Wireless InSite MIMO: predict complex H-matrices
- Prototype code for SINR & MIMO methods (MRT & ZF scripts from [4])
- Prototype calculations: MIMO streams, SINR, throughput

MIMO throughput

(Wireless InSite

Future Capability)

Prototype Algorithms:

Beamforming weights

SINR for MIMO streams

Throughput using MRT-MRC Beamforming

64x2 Scenario: Throughput w/MRT Beamforming MRT-MRC Beamforming

• 64x2 (red) achieves max throughput over most of area

Throughput using ZF Beamforming

ZF Beamforming

• 64x2 (red) generates 2 successful streams, achieving 100-200 Mbps

REMC

© Remcom Inc. All rights reserved.

Throughput using SVD Spatial Multiplexing

64x2 Scenario: Throughput with SVD

SVD Spatial Multiplexing

- Mostly > 100Mbps (2 streams)
- Inter-cell interference drops throughput in several places

Comparing MIMO Methods & Configurations

- Plot shows comparison of mean and minimum throughput along route
- Observations
 - SVD increased 86% over SISO on average, but continued to have significant dropouts
 - MRT 16x2 and 64x2 had only small improvement to mean, but beamforming eliminated dropouts
 - ZFBF more than doubled mean throughput and also eliminated dropouts

Built-in Optimizations Made Study Possible

- Recorded run times on high-end desk-top workstation
- Results show only 2-4 x increase in run-time for 64x2 FD-MIMO, making simulations for this demo very feasible

Scenario	MIMO Configuration	Run Time (min)
Route (593 points), 4 Base Stations	1x1 (SISO)	8.6
	4x2	9.0
	16x2	10.6
	64x2	17.1
Field Map (47,515 Points) , 4 Base Stations	1x1 (SISO)	33
	4x2	31
	16x2	48
	64x2	119

Conclusions

- Used Wireless InSite MIMO to demonstrate efficient method for predicting detailed channel characteristics for FD-MIMO scenario in downtown Boston
- Used prototype calculations planned for a future version to compute beamforming, SINR for MIMO streams, and throughput
- Results showed impact of inter-cell interference and some benefits to each of the beamforming approaches for the sample scenario
- Study provides insight into MIMO throughput for FD-MIMO, and demonstrates value of MIMO simulations in assessing performance

References

[1] H. Ji, et. al., "Overview of Full-Dimension MIMO in LTE-Advanced Pro," IEEE Communications Magazine, Volume 55, Issue 2, pages 176-184, October 20, 2016.

[2] R. Beck, "Results of Ambient RF Environment and Noise Floor Measurements Taken in the U.S. in 2004 and 2005," World Meteorological Organization Report, CBS/SG-RFC 2005/Doc. 5(1), March 2006.

[3] "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 13)," 3GPP TS 36.213 V13.6.0 (2017-06).

[4] E. Björnson, M. Bengtsson, and B. Ottersten, "Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure", IEEE Signal Processing Magazine, Vol. 31, No. 4, 2014, pp. 142-148. Also available arXiv:1404.0408v2 [cs.IT] 23 Apr 2014.

Contact

Toll Free: 1-888-773-6266 (US/Canada)

Tel: 1-814-861-1299

Email: sales@remcom.com

www.remcom.com

Free Trial: <u>www.remcom.com/free-trial-request-form</u> Pricing: <u>www.remcom.com/pricing</u>

Information Request: www.remcom.com/information-request-form

Google+: <u>https://plus.google.com/+Remcom/posts</u> Twitter: <u>twitter.com/remcomsoftware</u>

Facebook: <u>www.facebook.com/remcomsoftware</u> LinkedIn: <u>www.linkedin.com/company/remcom-inc</u>

