Impact of GPU Memory Access Patterns on FDTD
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Abstract—The application of General Purpose computing on
a GPU is an effective way to accelerate the FDTD method. This
work explores the different domain decomposition techniques
from the literature and extends the theoretically best approach
with additional flexibility. We examine the performance on both
Tesla and Fermi architecture GPUs and identify the best way to
determine the GPU parameters for the proposed method.

I. INTRODUCTION

The use of General Purpose computing on Graphics Pro-
cessing Units (GPGPU) to execute scientific computations
is becoming increasingly prevalent. GPGPU is particularly
suitable for executing problems with a high degree of data
parallelism, in order to make use of the many processing units
present on a typical GPU.

The Finite-Difference Time-Domain (FDTD) method is
popular because it directly solves Maxwell’s curl equations
with a minimal set of assumptions, thus providing a robust,
straightforward method. The FDTD method is characterised
by long FDTD iterations over large amounts of data organised
into multidimensional arrays. Due to significant data indepen-
dence between the calculations performed for each element
in each array, the FDTD method exhibits a large degree of
parallelism and is suitable for execution on a GPU.

II. GENERAL PURPOSE GPU CcOMPUTING WITH CUDA

NVIDIA’s Tesla Architecture introduced a GPU hardware
design consisting of an array of general-purpose, streaming
multi-processors. The architecture of a Tesla GPU is described
in detail in [1].

In conjunction, NVIDIA introduced the Compute Unified
Device Architecture programming model (CUDA) [1] [2].
CUDA allows a programmer to specify which sections of a
computation (described as ‘kernels’) should be executed on
the GPU [1]. A kernel operates over a grid of data, where a
grid is divided into blocks in either one or two dimensions.
Each block is further divided into threads in one, two or three
dimensions [2]. Within one kernel, a thread is identified by its
indices at both the block and thread level.

The global memory of a Tesla architecture GPU is currently
upto 4 GB and accessible to all threads in all blocks in a grid. It
has limited bandwidth and no cache so will limit performance
if used too extensively [2]. It is possible to optimise the
performance of access to global memory through “memory
coalescing” [2]. If simultaneously executing threads within a
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block access consecutive memory locations the requests are
combined into a single larger memory fetch. Fetching a large,
consecutive block of memory results in more efficient use of
the memory bandwidth [2].

A major revision to the architecture, named Fermi, in-
troduced improvements in the memory system. With Fermi
the shared memory can be configured as partially user pro-
grammable and partially a level 1 cache [3]. A level 2 cache to
global memory, unified across all SMs, is also introduced [3].

III. EXISTING IMPLEMENTATIONS OF THE FDTD METHOD
ON GPU HARDWARE

The FDTD method is a common algorithm for modelling
electro-magnetic behaviour through computation. It is cov-
ered in detail in [4]. Several implementations of the three-
dimensional FDTD method using CUDA have been published.
Each of these exhibits one of three domain decomposition
approaches to mapping the z,y and z dimensions of the three
dimensional FDTD space to the allocation of blocks and
threads.

In the first approach, the FDTD space is broken down into
two-dimensional planes, with the number of planes equal to
the number of elements along one axis. Within each plane,
the elements are divided into blocks and threads applied to the
other two axes. The FDTD equations for a particular plane are
solved in parallel using a kernel on the GPU, but each plane
is computed by its own kernel invocation, sequentially to the
others within a single time-step. While this method allows very
fine-grained decomposition to expose all of the parallelism
within a single plane, it does not exploit the full concurrency
of the algorithm since all the calculations in all planes are
independent from each other. This approach is used in [5] and
[6].

The second approach addresses the entire three-dimensional
space within a single kernel invocation. It also allocates blocks
and threads in two dimensions, however in this case each
thread executes all of the elements in the z direction in a for
loop. This means that each thread does much more work than
in the first approach and only one kernel instance is required
to address the full 3D space, but it does not alter the amount
of parallelism exposed overall. This approach is demonstrated
in [7] and also used in [8].

The third approach takes a fundamentally different approach
to domain decomposition. Blocks are allocated in two dimen-



sions and the x and y indices of each block are mapped to
two of the x, y and z dimensions of the FDTD space. Threads
within each block are allocated in one dimension, and the x
index of the thread is mapped to the remaining dimension of
the FDTD space. Each thread has three indices (two inherited
from the block and one for its position within the block) which
are mapped to the dimensions of 3D space. One thread can
be allocated to every cell in the FDTD space, exposing the
maximum available parallelism in the algorithm. This method
of decomposition is demonstrated in [9] and [10].

We use a similar method to the third approach, but with
flexibility in how much work is done by each thread. The
number of cells executed by each thread is determined by the
ratio of threads per block to N, (number of elements in the x
dimension). If N, is 6 , but the number of threads per block is
3, each thread is responsible for two cells in the  dimension.

IV. NUMERICAL EXPERIMENTS

Our GPU implementation was executed on a Tesla T10 GPU
and on a Fermi M2050 GPU. On each GPU, the implemen-
tation was executed for 5000 time-steps. The calculation was
performed in both single and double precision using both the
coalesced and uncoalesced configuration.

The results of our experiments are shown in Fig. 1.

It is clear that the coalesced approach provides better
performance than the uncoalesced approach, and the coalesced
approach performs best when the ratio between the number of
threads per block and the number of cores available in a GPU
board is around 0.15.

In case of the coalesced approach with single precision, the
T10 GPU takes about 1.5 times as much time as the M2050
GPU. This suggests the improvement of the performance
by the M2050 GPU in single precision mainly comes from
improved memory bandwith on the M2050, which is 1.4 times
wider than that of the T10 GPU.

In case of double precision, our coaleased approach per-
forms better on the M2050 GPU than the T10 GPU, reducing
60 % of the elapsed time of the T10 GPU. Although the
superior double precision performance in the M2050 GPU
contributes to this improved overall performance, we find the
major contribution to be the increased memory bandwidth for
double precision data on the M2050 GPU.

V. CONCLUSION

We find that there are three approaches to domain de-
composition in the literature when applying GPGPU to the
FDTD method in three dimensions. One of these gives the
opportunity to exploit the full parallelism in the algorithm. We
show through a flexible implementation of this approach that
coalesced memory access provides beneficial performance,
and that the amount of work performed by each thread also
influences performance.

We also find that the newer Fermi architecture provides
performance improvements over the Tesla architecture and
attribute this improvement to the improved memory subsystem
on Fermi GPUs.
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