

REMCOM INC. | 315 South Allen Street, Suite 416 | State College, PA 16801 USA
Tel: +1.814.861.1299 | Fax: +1.814.861.1308 | www.remcom.com

CUDA Implementation of Moving Window Finite Difference Time Domain

James F. Stack, Bradley Suchoski, and Jamie K. Infantolino

Remcom, Inc.

State College, PA, USA

James.Stack@remcom.com, Bradley.Suchoski@remcom.com, Jamie.Infantolino@remcom.com

Abstract: With the need for real time propagation growing each day, a new way to simulate propagation

models is needed that is closer to real time while maintaining the same amount of accuracy. The way to

get the most accurate results is to use a high fidelity model such as a Finite Difference Time Domain

(FDTD) model. This model is limited in space and computational resources. With the way the algorithm

is calculated, the computational space can become massive very quickly. Therefore modeling long

distances can be impossible. One way around that is to employ a method called Moving Window Finite

Difference Time Domain (MWFDTD). This method only takes into account the area around the pulse.

However, this is not close to real time due to computational intensity. One way to make this faster would

be to make the calculations faster by using a Graphics Processor Unit (GPU). The GPU can be used to

speed up the calculations like those found within MWFDTD.

1. Introduction

This paper discusses the challenges and techniques involved in converting the MWFDTD algorithm
from a C++ implementation to an appropriate form for leveraging graphics processor units (GPUs) through

NVIDIA’s CUDA framework. The GPU approach employs thousands of threads simultaneously which
requires special design considerations in order to achieve maximum speed ups. Previous work [1,2,3]

has concentrated on the challenges of implementing GPU-targeted software through the use of the
OpenGL API or the Cg language. With proper understanding of CUDA, it is possible to reach

speedups of beyond two orders of magnitude over traditional CPUs and increase performance by
a factor of two or more over previous GPU implementations.

2. Moving Window Finite Difference Time Domain

In order to model long range propagation using traditional 2D FDTD, a vertical plane containing the
entire irregular terrain profile is projected onto a rectangular grid consisting of evenly spaced grid points

in the x-y plane. In addition, time is divided into evenly spaced intervals. To begin the simulation, an

electromagnetic pulse is excited at the transmitting antenna and at each time step, the electromagnetic

fields at each grid point is determined by solving Maxwell’s equations using the second-order finite
differencing method of Yee[4]. The MWFDTD propagation model is based on a modified FDTD to

model radio wave propagation[5],[6].

REMCOM INC. | 315 South Allen Street, Suite 416 | State College, PA 16801 USA
Tel: +1.814.861.1299 | Fax: +1.814.861.1308 | www.remcom.com

One fact of a traditional FDTD method is the propagation radio pulse only occupies a small part of

the computational space. MWFDTD takes advantage of this by limiting the computational space to the
area surrounding the pulse. The window is only as wide and high as the pulse will be. All the other space

in a traditional FDTD calculation could be considered as waste. This allows longer runs because the

memory and time limitations are not as great. As the
pulse propagates along the terrain, the FDTD mesh is

moved forward to track the pulse as depicted in Figure

1. The window moves at the speed of light to follow
the pulse that is also moving at the speed of light.

The limited computational space does not

compromise the accuracy of MWFDTD. MWFDTD is

just as accurate as a regular FDTD calculation.

Error! Reference source not found. is the path

loss calculated at a frequency of 410MHz, with a

FDTD computational domain of 1000 cells wide by
4600 cells high, a cell spacing of 7.31 cm by 7.31 cm, which corresponds to 10 cells per wavelength at

410 MHz. The time step is chosen to be 0.181 ns. The results were compared with data obtained by ITS.

The difference between MWFDTD and the measurements is at most 2-3 dB.

3. CUDA GPU

Once used for the sole purpose of driving graphical displays, the GPU has evolved into a

powerful computational device. The Tesla C1060 offers a peak performance of 933 GFLOPS and a

memory bandwidth of 102 GB/s. This can yield significant performance gains over even a 2.66 GHz Intel

Core 2 Quad processor which has a theoretical peak performance of 42.56 GFLOPS (using all four cores

and full SSE2 optimizations) and a memory bandwidth of 10.7 GB/s. The recently released Fermi C2050 and

C2070 GPUs extend these differences even further with a peak performance of 1.03 Tflops and a memory

bandwidth of 144 GB/s.

CUDA allows software developers to leverage this power without the need for special computer
graphics knowledge [7][8]. The GPU is organized into a series of multiprocessors. Each of these

multiprocessors contains a set of stream processors and a shared memory cache to facilitate thread

cooperation.

CUDA compliant GPUs follow a single instruction multiple thread (SIMT) architecture [9]. In a SIMT

model, threads are launched simultaneously in groups termed warps. Each thread in the warp can execute
concurrently as long as they are performing the same instruction on different pieces of data. If threads of a
warp diverge through a conditional branch, thread execution must be serialized. The greatest speed gains
are achieved by designing software that minimizes thread divergence within a warp. Algorithms such as
FDTD perform small amounts of work on large amounts of data, so memory bandwidth tends to be a
critical factor in application performance. The GPU offers another significant advantage in this area. GPU
threads can switch contexts nearly instantaneously - without the need to store and restore thread state. This
fact allows the GPU to hide memory latency by launching thousands of threads simultaneously and
performing rapid context swapping while waiting for input data.

Figure 1: Moving Window Finite Difference

REMCOM INC. | 315 South Allen Street, Suite 416 | State College, PA 16801 USA
Tel: +1.814.861.1299 | Fax: +1.814.861.1308 | www.remcom.com

Instantaneous context switching is important for hiding memory latency. CUDA devices offer
several types of memory. The three most important types for these purposes are shared, constant, and
device (global) memory. Shared memory is cached on chip memory with low latency that can be accessed

cooperatively by a group of threads. It is particularly useful for implementing user defined caches. Constant
memory is a cached read-only section of memory currently limited to 64 KB. Device or global memory is

relatively high latency but is currently available in amounts up to 6 GB per device.

4. Implementation

Functions targeted for the GPU are implemented as kernels in CUDA. Kernels are very similar to C

functions except there are certain extensions needed. This creates a very easy transition for a new user to

implement any function using a kernel. The MWFDTD GPU library was written using a number of
kernels to utilize the GPU.

The GPU kernels were used in the main update equations, boundary conditions and shifting the arrays
as the window moves. These are the core FDTD functions within the MWFDTD function. Each of these

functions required special consideration with regards to the MWFDTD implementation.

The first step was to convert the update equations from C to CUDA. This was done by converting the
update functions to update kernel functions. The main task here was to eliminate the loop that was used

within the equations. The kernel functions will loop over the data available without having the user

implement a loop. The rest of the functions were then converted using the same idea.

The next step was to define all of the constant data like material identifiers, material constants, and all

other constant arrays. This data will be needed at each time step and each time the window will move.
There are two methods that CUDA capable GPU can read or write from/to global memory; coalesced and

uncoalesced. Coalesced reads or writes allowed the GPU to perform memory transactions of 32, 64, or

128 bytes simultaneously. This is the most optimized what to read and write to a GPU due to the fact

uncoalesced reads have to be serialized which could require between 400 and 600 clock cycles. The
MWFDTD model utilized this fact by allocating the update coefficients in constant memory instead of

global memory. This is due to the fact these needed to be read at every time step.

The last step was to implement the functions that will move the window. Each time the window

moves new data has to be read into the problem, old data deleted, and all arrays have to be shifted. This

was done utilizing various aspects of CUDA’s capability of shifting arrays within memory. The key was

to minimize the number of reads from main memory. The reads were done while the results from the
previous window were being written back to main memory. Also the number of reads were minimized by

only reading in the new column of data and shifting the data that was already on the card.

REMCOM INC. | 315 South Allen Street, Suite 416 | State College, PA 16801 USA
Tel: +1.814.861.1299 | Fax: +1.814.861.1308 | www.remcom.com

5. Simulations

To document the speeds up within the new MWFDTD model, simple test cases were developed to

utilize the new GPU implementation of the model. Each test case was run first in the released MWFDTD

2.5 version and then rerun using the same setup file in the new GPU Implementation in 2.6 version.
Results were then compared.

Table 1: Tests

Test Frequency(MHz) Range(m) Terrain

Type
Number of

Receivers

1 300 1000 Dry sand 1

2 300 1000 Dry sand 10846

3 145 500 Seawater 1

4 200 1000 Wet earth 1

As with other FDTD methods, terrain type impacts scenario set up thus affecting runtimes. The

terrain type impacts the number of cells per wavelength. The more cells present within the window, the
longer the runtimes. Dry sand terrain scenarios run with 20 cells per wavelength while sea water terrain

scenarios run with 100 cells per wavelength. 10 cells per wavelength in the material is needed. To find

this value, Equation 1 is used. Table 2 shows a summary of the cells per wavelength per test.

 √
 (Equation 1)

Table 2: Cells Per Wavelength

Test Terrain

Type
Cells per

Wavelength

1 Dry sand 20

2 Dry sand 20

3 Seawater 100

4 Wet earth 50

Each test case consists of a terrain defined by the terrain type at the set range. The waveform used a
sinusoid with a carrier frequency defined in the Table 1. The antenna was an isotropic antenna with the

defined waveform. There was one transmitter for each project. The number of receivers for each project

is defined in the table.

REMCOM INC. | 315 South Allen Street, Suite 416 | State College, PA 16801 USA
Tel: +1.814.861.1299 | Fax: +1.814.861.1308 | www.remcom.com

Figure 2: Example Project

The computer configuration for the tests is listed in Table 3.

Table 3: Computer Specifications

 Computer Specification

Operating System Windows

CPU Processor Intel Xeon X5660, 2.80 GHz

CPU

CPU Memory 8GB

GPU NVIDIA C2050 GPU

GPU Memory 3GB

REMCOM INC. | 315 South Allen Street, Suite 416 | State College, PA 16801 USA
Tel: +1.814.861.1299 | Fax: +1.814.861.1308 | www.remcom.com

6. Results

Timing for a complete simulation was the benchmark used to evaluate the performance of the new

MWFDTD model. Each of the tests described in Section 5 where first run using the CPU implementation

then run on the same computer using the GPU implementation.

Table 4: Timing Results

Test CPU

Timing(sec)

GPU

Timing(sec)

Speed Ups

1 8127 212 38.33

2 7731 137 56.43

3 84647 1915 44.20

4 29123 468 62.23

The speed up comparisons are depicted in Figure 3.

Figure 3: Runtime Comparisons

REMCOM INC. | 315 South Allen Street, Suite 416 | State College, PA 16801 USA
Tel: +1.814.861.1299 | Fax: +1.814.861.1308 | www.remcom.com

Test 3 has the largest speed up due to the material that was used. This material required a

denser grid. This denser grid creates the need for more calculations to be performed each time

step. The GPU runtimes for this particular case are closer to the other cases. This is due to the

fact the GPU can process the calculations simultaneously thus processing more data in a shorter

amount of time. This shows the true power of the GPU.

Figure 4: Speed Up Comparisons

The speed ups achieved are between 38X – 62X. The results show the more complex

problems benefit the most from the new GPU implementation. The Wet Earth test cases shows

the highest speed up due to the materials used, the range of the problem, and the frequency of the

antenna. The sea water case has a lot of cells in each window which results in a long runtime.

The majority of the GPU runtimes are very similar as opposed to the CPU runtimes which are all

over the board. This is due to the fact the GPU can simultaneously calculate hundreds of grid

points while the CPU is limited on the amount of calculations it can perform. This allows most

if not all of the cells in one vertical column to be calculated at once instead of one or maybe two

at a time like on the CPU thus resulting in the same runtimes for each column. Due to the ability

to only calculate one column at a time, the GPU has enough memory to calculate the denser grids

like in the wet earth test case in similar time as the less dense grid test case.

MWFDTD was an ideal program to port over to the GPU. The calculations are able to be

performed in parallel to completely utilize the power of the GPU.

REMCOM INC. | 315 South Allen Street, Suite 416 | State College, PA 16801 USA
Tel: +1.814.861.1299 | Fax: +1.814.861.1308 | www.remcom.com

References

[1] M. J. Inman, A. Z. Elsherbeni, and C. E. Smith “GPU Programming for FDTD Calculations,” The

Applied Computational Electromagnetics Society (ACES) Conference, Honolulu, Hawaii, 2005.

[2] M. J. Inman and A. Z. Elsherbeni, “3D FDTD Acceleration Using Graphical Processing Units,” The

Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, 2006.

[3] Adams, Samuel, Jason Payne, and Rajendra Boppana, “Finite Difference Time Domain (FDTD)

Simulations Using Graphics Processors”, HPCMP Users Group Conference, 2007
[4] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in

isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, 1966.

[5] Luebbers, R.; Schuster, J.; Wu, K., "Full wave propagation model based on moving window FDTD,"

Military Communications Conference, 2003. MILCOM 2003. IEEE , vol.2, no., pp. 1397-1401 Vol.2,

13-16 Oct. 2003
[6] M. F. Hadi and M. Piket-May, “A modified FDTD (2,4) scheme for modeling electrically large

structures with high-phase accuracy,” IEEE Trans. Antennas Propagat. vol. 45, pp. 254-264, 1997.

[7] Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J. “NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 28, pp. 39-55, March 2008.

[8] Nickolls, J., Buck, I., Garland, M., and Skadron, K., “Scalable Parallel Programming with CUDA,”

Queue 6, pp. 40-53, March 2008.
[9] “CUDA Programming Guide, 2.1,” NVIDIA

